Product Qualification Program

Final Hail Stress Sequence Report 35 mm

Aiko Solar

AIKO-A645-GRH66Dw BOM 1

Report Number: R9530E-1

Date: 21 January 2025

Kiwa PVEL

388 Devlin Road

Napa, CA 94558

Tel: +1 415 320 7835

We Create Trust

Report details

Report no.	R9530E-1	Customer	Shenzhen Aiko Digital Energy Technology Co., Ltd.
Project no.	9530	Customer Contact	Su Xiong
Date of issue	21 January 2025		

Approval

	Name	Title	Cimatura
Preparation	Charan Gurram	Report Writer	Signature
Verification	Jeff Cleland	Project Manager	aubert
Approval	Jean-Nicolas Jaubert	Director of Operations, China	

Copyright © 2025 – PVEL LLC ("Kiwa PVEL"). All rights reserved. Reference to part of this report which may lead to misinterpretation is not permissible.

IMPORTANT NOTICE AND DISCLAIMER

- This document is intended for the sole use of the Customer as detailed on the front page of this document to whom the document is addressed and who has entered into a written agreement with Kiwa PVEL LLC ("Kiwa PVEL"). To the extent permitted by law, Kiwa PVEL assumes no responsibility whether in contract, tort (including without limitation negligence), or otherwise howsoever, to third parties (being persons other than the Customer), and Kiwa PVEL shall not be liable for any loss or damage whatsoever suffered by virtue of any act, omission or default (whether arising by negligence or otherwise) by Kiwa PVEL or any of its servants, subcontractors or agents. This document must be read in its entirety and is subject to any assumptions and qualifications expressed therein as well as in any other relevant communications in connection with it. This document may contain detailed technical data which is intended for use only by persons possessing requisite expertise in its subject matter.
- 2. This document is protected by copyright and may only be reproduced and circulated in accordance with the Document Classification and associated conditions stipulated or referred to in this document and/or in Kiwa PVEL's written agreement with the Customer. No part of this document may be disclosed in any public offering memorandum, prospectus or stock exchange listing, circular or announcement without the express and prior written consent of Kiwa PVEL. A Document Classification permitting the Customer to redistribute this document shall not thereby imply that Kiwa PVEL has any liability to any recipient other than the Customer.
- 3. This document has been produced from information relating to dates, periods and test samples referred to in this document. This document does not imply that any information is not subject to change. Except and to the extent that checking or verification of information or data is expressly agreed within the written scope of its services, Kiwa PVEL shall not be responsible in any way in connection with erroneous information or data provided to it by the Customer or any third party, or for the effects of any such erroneous information or data whether or not contained or referred to in this document.

DOCUMENT CLASSIFICATION

 $\hfill\square$ Commercial in Confidence: Not to be disclosed outside the Customer's organization.

Distribution for information only at the discretion of the Customer (subject to the above Important Notice and Disclaimer and the terms of Kiwa PVEL's written agreement with the Customer).

Revision	Date	Reason for Issue	Preparation	Verification	Approval
1	1/21/2025	Initial Release	Charan Gurram	Jeff Cleland	Jean-Nicolas Jaubert

The test results in this report relate just to the test objects.

Table of Contents

Table of	f Contents	3
1.	Summary	4
1. 1.	Manufacturer specifications	4
1. 2.	Test data summary	4
2.	Hail Stress Sequence	5
2. 1.	Front side STC performance test data - HSS	7
2. 2.	Rear side STC performance test data - HSS	8
2. 3.	Front side 200 W/m² performance test data - HSS	9
2. 4.	1.0 * I _{SC} Electroluminescence images – HSS	10
2. 5.	0.1 * I _{SC} Electroluminescence images - HSS	12
2. 6.	Visual inspection notes – HSS	14
2. 7.	Wet leakage current test data – HSS	15
Exhibit .	A – BOM Details	16
Append	lix A – Product Qualification Program (PQP)	17
Append	lix B – List of Reports	18
Append	ix C – Typical PV Module Failure Mechanisms	19
Append	lix D – Flash-Test Measurement Summary	20
Append	lix E – List of Abbreviations	21
Append	lix F – Manufacturer Datasheet	22

1. Summary

Aiko Solar (Shenzhen Aiko Digital Energy Technology Co., Ltd.) submitted AIKO-A645-GRH66Dw photovoltaic (PV) modules for accelerated stress testing and characterization under PVEL LLC's (Kiwa PVEL) Product Qualification Program (PQP). All testing in this report was completed at Kiwa PVEL's lab in Jiangsu, China. Real-world failure mechanisms outlined in Appendix C are simulated in a controlled laboratory environment, and state-of-the-art module characterization techniques are utilized to measure the performance of the modules as they progress through the protocol. The results of the PQP testing are presented in this report.

This report is part of Kiwa PVEL's PQP project 9530. Please refer to Appendices A and B for more details. BOM information can be found in report R9530A.

1. 1. Manufacturer specifications

The module specifications were taken from the datasheet provided by the customer. The datasheet can be found in Appendix F.

AIKO-A645-GRH66Dw Datasheet Specifications									
Model P _{MAX} [W] V _{OC} [V] V _{MP} [V] I _{SC} [A] I _{MP} [A] FF [%]									
AIKO-A645-GRH66Dw	645	49.20	41.90	16.55	15.40	79.24			

1. 2. Test data summary

Average Post-stress Change in P _{MAX} Relative to Initial Measurement [%]								
Model	HSS Post-Hail							
AIKO-A645-GRH66Dw	-0.24							
	Visual Inspection Findings ¹							
AIKO-A645-GRH66Dw	None							
We	et Leakage Insulation Resistance Meets IEC 61215-1:2021 Requirements ²							
AIKO-A645-GRH66Dw	Yes							
	Electrical Circuitry ³							
AIKO-A645-GRH66Dw	Pass							

©2025 PVEL LLC Report No.: R9530E-1 Page: 4 | 22

¹ Major visual defects, if present, are defined as such by IEC 61215-1:2021.

 $^{^2}$ For reference, IEC 61215-2:2021 MQT 15 defines a passing insulation resistance for the type of module tested to be no less than 40 M Ω ·m 2

³ Electrical circuitry failures encompass samples exhibiting an open-circuit during or post-test, as well as bypass diode failure (as recorded in the bypass diode functionality test after the thermal cycling and mechanical stress sequences or as detected in EL pictures after other test sequences).

2. Hail Stress Sequence

As the global climate changes and PV deployment increases to a variety of locations around the world, PV modules mounted in the field may be exposed to severe hail impacts beyond what is covered by the IEC 61215 baseline hail test. These hail impacts can result in broken glass and/or cracked cells, and those cracked cells can eventually lead to power loss for hail damaged modules. Kiwa PVEL's HSS test is focused on determining a module's susceptibility to these hail impact failure modes.

The test sequence starts when test samples are struck by a 35±1.8 mm / 20.7±1.0 g lab-manufactured ice ball at terminal velocity 27.2±1.4 m/s in 11 different locations normal to the module as indicated by IEC 61215-2:2021 MQT 17. These hail strikes deliver a nominal impact energy of 7.7 joules.

Shot No.	Module Location
1	Any corner of the module window, not more than one radius of ice-ball from the module edge.
2	Any edge of the module, not more than one radius of ice-ball from the module edge.
3, 4	Over the circuit near interconnects (i.e., cell interconnects and bus ribbons).
5, 6	Over edges of the circuit (e.g., individual cells).
7, 8	On the module window, not more than half diameter of ice ball from one of the points at which
	the module is mounted to the supporting structure.
9, 10	On the module window, at points farthest from the points selected above.
11	Any points which may prove especially vulnerable to hail impact like over the junction box.

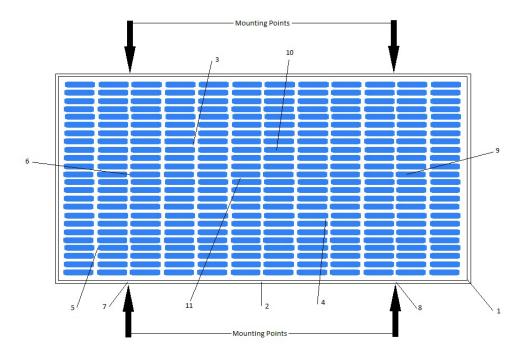


Figure 2-1: Location of 11 hail strikes.

The actual hail diameter, mass, velocity and impact locations achieved during testing were all within the allowable tolerances specified in IEC 61215-2:2021 MQT 17.

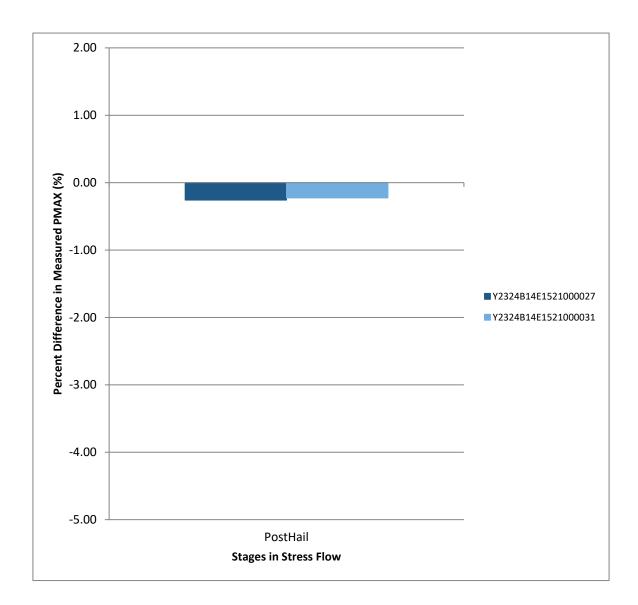


Figure 2-2 Percent deviation in measured P_{MAX} due to stress

2. 1. Front side STC performance test data - HSS

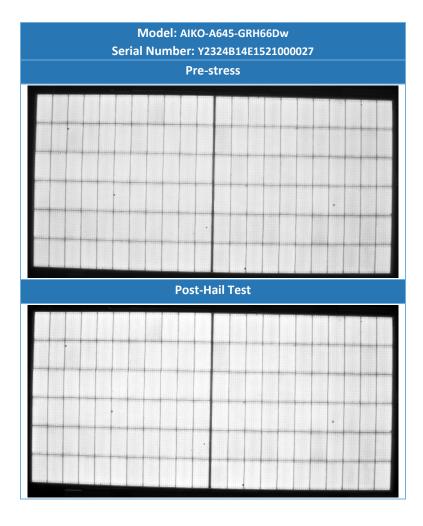
Pre-stress Test Data								
Model	Serial Number	P _{MAX} [W]	V _{oc} [V]	V _{MP} [V]	I _{sc} [A]	I _{MP} [A]	FF [%]	
AIKO-A645-GRH66Dw	Y2324B14E1521000027	635.1	49.11	42.14	15.96	15.07	81.01	
AIKO-A645-GRH66Dw	Y2324B14E1521000031	634.8	49.11	42.16	15.92	15.06	81.18	

Post-Hail Test Data									
Model	Serial Number	P _{MAX} [W]	V _{oc} [V]	V _{MP} [V]	I _{SC} [A]	I _{MP} [A]	FF [%]		
AIKO-A645-GRH66Dw	Y2324B14E1521000027	633.5	49.03	42.15	15.97	15.03	80.90		
AIKO-A645-GRH66Dw	Y2324B14E1521000031	633.3	49.04	41.96	15.96	15.09	80.92		
Percent Deviation from Pre-stress Test Data									
Model	Serial Number	P _{MAX} [%]	V _{oc} [%]	V _{MP} [%]	Isc [%]	I _{MP} [%]	FF [%]		
AIKO-A645-GRH66Dw	Y2324B14E1521000027	-0.26	-0.16	0.02	0.04	-0.28	-0.13		
AIKO-A645-GRH66Dw	Y2324B14E1521000031	-0.23	-0.14	-0.47	0.24	0.25	-0.32		

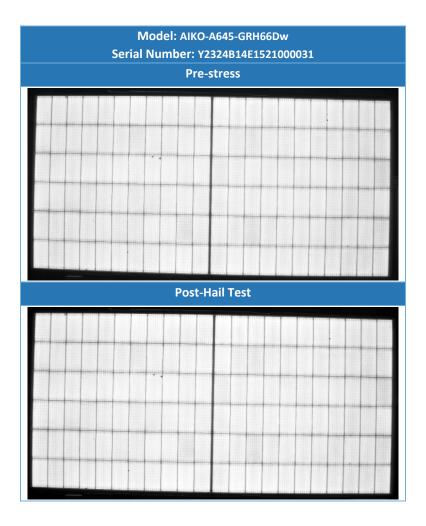
2. 2. Rear side STC performance test data - HSS

Pre-stress Test Data								
Model	Serial Number	P _{MAX} [W]	V _{oc} [V]	V _{MP} [V]	I _{sc} [A]	I _{MP} [A]	FF [%]	
AIKO-A645-GRH66Dw	Y2324B14E1521000027	440.7	48.63	41.61	11.08	10.59	81.75	
AIKO-A645-GRH66Dw	Y2324B14E1521000031	439.8	48.64	41.28	11.09	10.65	81.52	

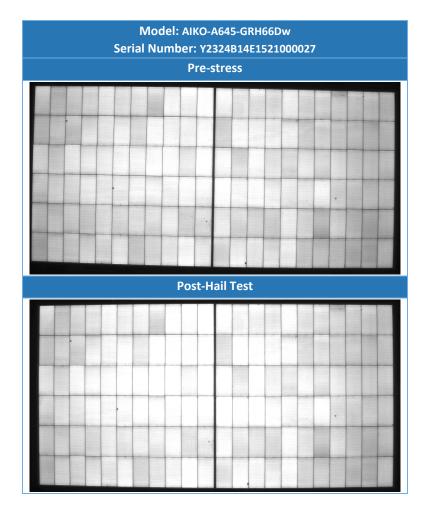
Post-Hail Test Data									
Model	Serial Number	P _{MAX} [W]	V _{oc} [V]	V _{MP} [V]	I _{sc} [A]	I _{MP} [A]	FF [%]		
AIKO-A645-GRH66Dw	Y2324B14E1521000027	439.4	48.53	41.32	11.08	10.63	81.67		
AIKO-A645-GRH66Dw	Y2324B14E1521000031	438.6	48.54	41.33	11.07	10.61	81.63		
	Percent Deviation from Pre-stress Test Data								
Model	Serial Number	P _{MAX} [%]	V _{oc} [%]	V _{MP} [%]	I _{sc} [%]	I _{MP} [%]	FF [%]		
AIKO-A645-GRH66Dw	Y2324B14E1521000027	-0.30	-0.19	-0.71	-0.01	0.42	-0.10		
AIKO-A645-GRH66Dw	Y2324B14E1521000031	-0.27	-0.21	0.11	-0.19	-0.38	0.13		

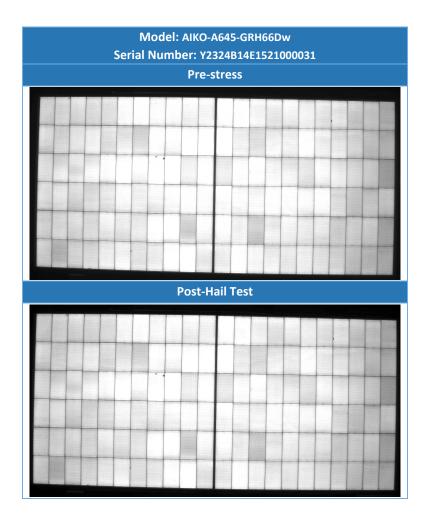

2. 3. Front side 200 W/m² performance test data - HSS

Pre-stress Test Data								
Model	Serial Number	P _{MAX} [W]	V _{oc} [V]	V _{MP} [V]	I _{sc} [A]	I _{MP} [A]	FF [%]	
AIKO-A645-GRH66Dw	Y2324B14E1521000027	118.1	46.62	40.27	3.16	2.93	80.13	
AIKO-A645-GRH66Dw	Y2324B14E1521000031	117.8	46.63	40.15	3.16	2.94	80.05	


Post-Hail Test Data								
Model	Serial Number	P _{MAX} [W]	V _{oc} [V]	V _{MP} [V]	I _{sc} [A]	I _{MP} [A]	FF [%]	
AIKO-A645-GRH66Dw	Y2324B14E1521000027	118.5	46.59	40.24	3.18	2.95	79.99	
AIKO-A645-GRH66Dw	Y2324B14E1521000031	118.4	46.59	40.10	3.18	2.95	79.97	
	Percent Devia	ation from P	re-stress Te	est Data				
Model	Serial Number	Рмах [%]	V _{oc} [%]	V _{MP} [%]	Isc [%]	I _{MP} [%]	FF [%]	
AIKO-A645-GRH66Dw	Y2324B14E1521000027	0.34	-0.07	-0.08	0.58	0.42	-0.17	
AIKO-A645-GRH66Dw	Y2324B14E1521000031	0.46	-0.08	-0.11	0.64	0.58	-0.10	

2. 4. 1.0 * I_{SC} Electroluminescence images – HSS





2. 5. 0.1 * I_{SC} Electroluminescence images - HSS

2. 6. Visual inspection notes – HSS

Pre-stress Inspection Notes								
Model	Serial Number Notes Defect Category Photo							
AIKO-A645-GRH66Dw	Y2324B14E1521000027	Not Applicable	None	Not Applicable				
AIKO-A645-GRH66Dw	Y2324B14E1521000031	Not Applicable	None	Not Applicable				

Post-Hail Test Inspection Notes								
Model	Serial Number Notes Defect Category Photo							
AIKO-A645-GRH66Dw	Y2324B14E1521000027	Not Applicable	None	Not Applicable				
AIKO-A645-GRH66Dw	Y2324B14E1521000031	Not Applicable	None	Not Applicable				

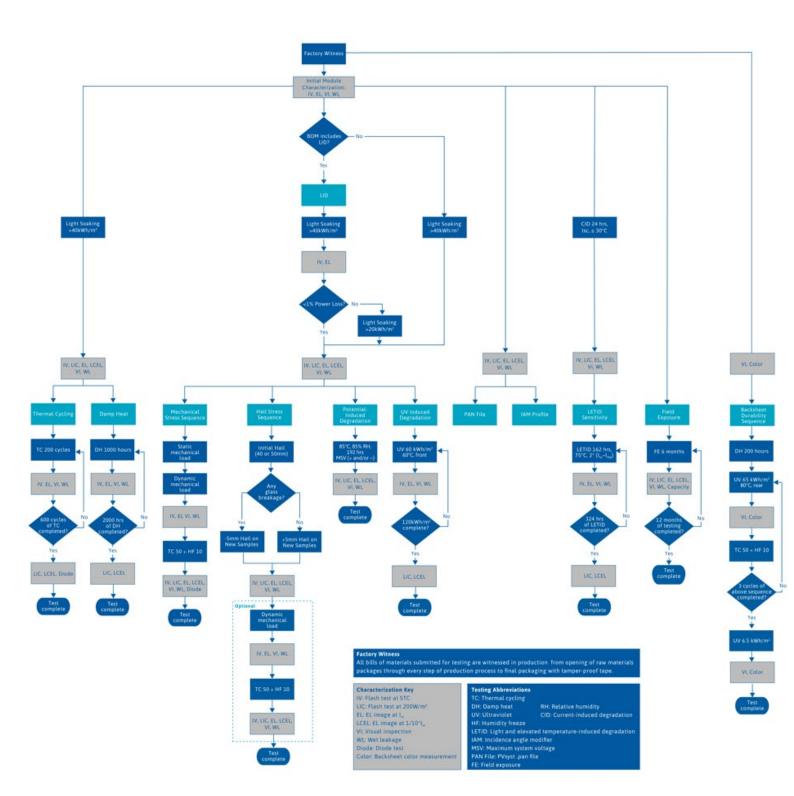
©2025 PVEL LLC Report No.: R9530E-1 Page: 14 | 22

2. 7. Wet leakage current test data – HSS

Pre-stress Test Data							
Model	Serial Number	Insulation Resistance [MΩ·m²]	Within IEC 61215's Requirement				
AIKO-A645-GRH66Dw	Y2324B14E1521000027	19259	Yes				
AIKO-A645-GRH66Dw	Y2324B14E1521000031	17477	Yes				

Post-Hail Test Data							
Model	Serial Number	Insulation Resistance [MΩ·m²]	Within IEC 61215's Requirement				
AIKO-A645-GRH66Dw	Y2324B14E1521000027	18908	Yes				
AIKO-A645-GRH66Dw	Y2324B14E1521000031	18314	Yes				

©2025 PVEL LLC Report No.: R9530E-1 Page: 15 | 22


Exhibit A - BOM Details

PI Berlin witnessed the production of the modules tested in this report and verified the BOM components. BOM information can be found in Kiwa PVEL Report R9530A.

© 2025 PVEL LLC Report No.: R9530E-1 Page: 16 | 22

Appendix A – Product Qualification Program (PQP)

Appendix B – List of Reports

The following is a list of all reports issued over the duration of an entire module PQP.

- Witness Report
- Intake Report
- Light-induced Degradation Report
- Hail Stress Sequence Report
- Interim Reliability Report
- Final Reliability Report
- Interim Backsheet Durability Report (not required for glass//glass modules)
- Final Backsheet Durability Report (not required for glass//glass modules)
- Optional: PAN File Parameter Measurement Report
- Optional: Incidence Angle Modifier Report
- Optional: Interim Field Exposure Report
- Optional: Final Field Exposure Report

Appendix C – Typical PV Module Failure Mechanisms

	Light induced Degradation	Light and Elevated Temperature Induced Degradation	Thermal Cycling	Damp Heat	Backsheet Durability Sequence	Mechanical Stress Sequence	Hail Stress Sequence	Potential-Induced Degradation (PID)
Corrosion of cell metallization				✓		✓	✓	
Junction box failure (solder joints, arcing, etc.)			✓			✓	✓	
Glass fracture						✓	✓	
Bypass diode failure (short or open)			✓	✓		✓	✓	
Cracked cells			✓			✓	✓	
Solder joint degradation			✓			✓	✓	
Delamination				✓	✓			
Junction box detach				✓				
Connector embrittlement (moisture ingress)			✓	✓	✓			
Frame tape or frame adhesive failure						✓		
Frame fatigue						✓		
Optical degradation of encapsulant and backsheet					√			
Light-Induced Degradation (LID)	✓							
Light and Elevated Temperature Induced Degradation (LETID)		~						
Outgassing of in-laminate materials (Chemical incompatibilities)			~	~	✓	~	~	
Backsheet embrittlement leading to cracks			✓	✓		✓	✓	
Busbar sharp edges, solder peaks, cutting through backsheet			✓					
Electrochemical corrosion of busbars or cell metallization								✓
Ion migration / Polarization / Potential-Induced Degradation (PID)								~
Discoloration of frame, junction box, or polymeric materials				✓	✓	✓	✓	
Backsheet stack layer delamination				√		√	√	
Hail damage							✓	

Appendix D – Flash-Test Measurement Summary

HALM CetisPV-Moduletest3 pulsed solar simulator (flash-tester)

- Class A+A+A+
 - o Non-uniformity of irradiance ≤ 1%
 - o Long-term pulse instability ≤ 1%
 - Spectral irradiance distribution ≤ ± 12.5%
- All performance values are extracted from the measured I-V data
- Expanded (k = 2) uncertainty values at STC (assuming a spectral mismatch factor of 1 and not including module metastability behavior):
 - $\circ \hspace{0.5cm} I_{SC}\hspace{-0.1cm}:\hspace{0.1cm} \pm\hspace{0.1cm} 2.0\%$
 - $\circ \hspace{0.5cm} V_{OC}\text{:} \pm 0.8\%$
 - P_{MAX}: ± 2.1%
- Maximum deviation of achieved temperature/irradiance from target temperature/irradiance:
 - Temperature: ± 1°CIrradiance: ± 0.5%

PI's HALM CetisPV-Moduletest3 pulsed solar simulator was calibrated using the reference module listed below.

Tested Device Technology	Reference Module Identifier	Reference Module Technology		Next Calibration Due Date	
p-type crystalline-Si PERC	L01220710300014	p-type crystalline-Si PERC	Fraunhofer ISE	August 7, 2026	

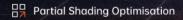
After calibrating the flash-tester to the reference module, the modules were flash-tested following the guidance of IEC 60904-1:2020.

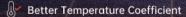
© 2025 PVEL LLC Report No.: R9530E-1 Page: 20 | 22

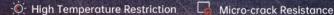
Appendix E – List of Abbreviations

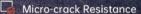
Abbreviation	Meaning
ВОМ	Bill of Material
BSF	Back Surface Field
CdTe	Cadmium Telluride
Kiwa PVEL	Kiwa PVEL LLC
EL	Electroluminescence
НЈТ	Heterojunction
IEC	International Electrotechnical Commission
IBC	Interdigitated Back Contact
I _{MP}	Current at maximum power
I _{SC}	Short-circuit current
PERC	Passivated Emitter and Rear Contact
P _{MAX}	Maximum power
PQP	Product Qualification Program
PV	Photovoltaic
STC	Standard test conditions
V _{MP}	Voltage at maximum power
V _{oc}	Open-circuit voltage

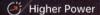
Appendix F – Manufacturer Datasheet

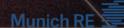

The manufacturer's datasheet(s) are included on the following pages.




STELLAR

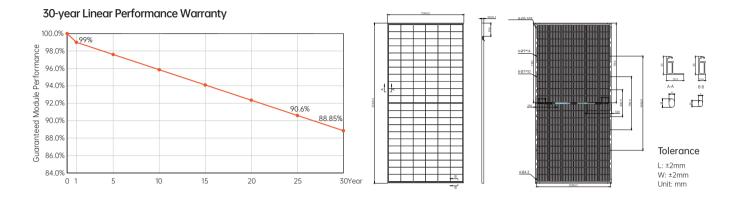

1N+66 Dual-Glass Module 635W-665W


Technical Features:


reddot winner 2023

665W

24.6%


Efficiency

≤1%

Annual Degradation from Year 2-30

First-year Degradation

Electrical Ch	Electrical Characteristics (STC: AM1.5 1000W/m² 25°C NOCT: AM1.5 800W/m² 20°C 1m/s) Power Tolerance:0~ + 3%													
Module Type	AIKO-A635	-GRH66Dw	AIKO-A640	-GRH66Dw	AIKO-A645	-GRH66Dw	AIKO-A650	-GRH66Dw	AIKO-A655	-GRH66Dw	AIKO-A660	-GRH66Dw	AIKO-A665-G	RH66Dw
Test Conditions	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT
P _{max} [W]	635	481	640	485	645	489	650	493	655	496	660	500	665	504
V _{oc} [V]	49.00	46.49	49.10	46.58	49.20	46.68	49.30	46.77	49.40	46.87	49.50	46.96	49.60	47.06
V _{mp} [V]	41.70	39.56	41.80	39.66	41.90	39.75	42.00	39.85	42.10	39.94	42.20	40.04	42.30	40.13
I _{sc} [A]	16.41	13.26	16.48	13.32	16.55	13.37	16.62	13.43	16.69	13.49	16.76	13.54	16.83	13.60
I _{mp} [A]	15.23	12.18	15.32	12.24	15.40	12.31	15.48	12.38	15.56	12.44	15.65	12.51	15.73	12.57
Module Efficienc	y 23	.5%	23.	7%	23.	.9%	24	.1%	24	.2%	24	.4%	24.	6%

Mechanical Specification						
Bifacial Factor	70±5%					
Cell Type	N-Type ABC					
Glass	Dual glass,2.0+2.0mm coated semi-tempered glass					
Frame	Anodized aluminum					
Cable	4mm²(IEC) 12AWG(UL) +350mm, -280mm/±1400mm or Customized Length					
No. of Cells	132(6*22)					
Junction Box	IP68, 3 bypass diodes					
Connector	MC4 compatible/MC4-Evo2					
Weight	33.5kg±3%					
Dimension	2382*1134*30mm					
Package Detail	36pcs per pallet / 144pcs per 20'GP / 720pcs per 40'HC					

Temperature Coefficient of I _{sc}	+ 0.05%/ °C
Temperature Coefficient of $V_{\circ \circ}$	- 0.22%/ °C
Temperature Coefficient of P_{max}	- 0.26%/ °C
Installation Guide	
Operation Temperature	-40°C - +85°C
Maximum Series Fuse Rating	30A
Protection Class	Class II
$V_{\rm oc}$ and $I_{\rm sc}$ Tolerance	±3%
Maximum System Voltage	DC1500V
Maximum Static Loading	Front 5400Pa Back 2400Pa
Hail Test	25 mm diameter hail at 23 m/s
Fire Rating	IEC Class C

Temperature Ratings (STC)

